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The thermodynamic assessments of the U-Mn and U-Nb binary systems were carried out by using the
CALPHAD (Calculation of Phase Diagrams) method incorporating experimental thermodynamic proper-
ties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, U and BU phases were described

by the subregular solution model with the Redlich-Kister equation, and those of the intermetallic com-

PACS:
82.60.—s

81.30.Bx .
binary system.

pounds (Mn,U and MnUg) in the U-Mn binary system were described by the two-sublattice model. The
thermodynamic parameters of the U-Mn and U-Nb binary systems were optimized to reproduce the
experimental data, and provide agreement with the experimentally determined phase diagram for each

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of uranium in the production of energy from nuclear fis-
sion has given considerable impetus to the investigation of the U
alloys in recent decades. The investigations of U-based alloys focus
not only on the U compounds used in the fuels, but also on the al-
loys of U and common elements of the structural materials and fis-
sion products [1-3]. Mn and Nb are very important alloying
elements for the U-based alloys [4-9]. In order to develop new nu-
clear materials, it is necessary to understand the phase equilibria in
U-based alloy systems.

The CALPHAD method is a powerful tool to reduce cost and time
during development of materials [10]. As a result, it is of great
importance to establish the thermodynamic database for the U-
based alloys system. In this paper, as a part of thermodynamic
database of U-based alloy systems, the thermodynamic descrip-
tions for the phase equilibria in the U-Mn and U-Nb systems were
carried out by means of the CALPHAD method.

2. Thermodynamic model

The information of stable solid phases and the used models in
the U-Mn and the U-Nb systems [11] is listed in Table 1.

2.1. Solution phases

The Gibbs free energies of the solution phases in Me-U (Me:
Mn, Nb) system were described by the subregular solution model
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[12]. The molar Gibbs free energy of each solution phase in the
Me-U system is given as follows:

G = X3, Gire + X0Gl) + RT (xpe I Xpe + Xy Inxy)

n
+ XMeXUZmLKhe,U(XMe - Xu)m7 (1)

m=0

where °Gf,. and °G}, are the molar Gibbs free energy of pure element
Me and U with the structure ¢ in a nonmagnetic state, which is ta-
ken from the compilation by Dinsdale [13] and shown in Table 2.
The xye and xy are the mole fractions of Me and U components,
and ML}, is the interaction energy between Me and U atoms,
and expressed as:

"oy = @+ bT +cTIn(T), (2)

the parameters of a, b and c are evaluated based on the experimen-
tal data in the present work.

2.2. Stoichiometric intermetallic compounds

The Mn,U and MnUg compounds in the U-Mn system are trea-
ted as stoichiometric phases. The Gibbs free energy of formation
per mole of formula unit (Mn), (U), can be expressed by the
two-sublattice model [14], as the following equation referring to
the pure elements in their nonmagnetic state:

AGY™n=0GYMUn _mPGit  nOGE = a' + DT, (3)
where the AG}V[“'"U” denotes the standard Gibbs free energy of for-
mation of the stoichiometric compound from the pure elements.
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Table 1
The stable solid phases and the models used in the U-Mn and U-Nb systems

System Phase Prototype Struckturbericht designation Modeling phase Used models

U-Mn 3Mn W A2 (U,Mn) Subregular solution model
YMn Cu Al (U,Mn) Subregular solution model
BMn BMn A13 (U,Mn) Subregular solution model
oMn oMn A12 (Mn) Subregular solution model
Mn,U Cu,Mg C15 (Mn),(U) Two-sublattice model
MnUg MnUg D2, (Mn)(U)s Two-sublattice model
yU W A2 (U,Mn) Subregular solution model
BU BU Ap (U,Mn) Subregular solution model
oU [010] A20 (U) Subregular solution model

U-Nb (YU,Nb) '\ A2 (U,Nb) Subregular solution model
318) BU Ap (U,NDb) Subregular solution model
oU oU A20 (U,Nb) Subregular solution model

Table 2

Gibbs energy parameters of condensed pure elements [13]

Gibbs free energy (J/mol)

Temperature (K)

Liquid phase

G[SJER

+3947.766 + 120.631251 T — 26.9182 TIn(T) + 1.25156 x 10> T?> — 4.42605 x 107 T°> + 38568 T~!
—~10166.3 +281.797193 T — 48.66 TIn(T)

SER
GMn

+9744.63 + 117.4382 T — 23.4582 TIn(T) — 7.34768 x 1073 T2 + 69827 T~' — 441929 x 10-2' 7
—9993.9 +299.036 T — 48 TIn(T)

SER
GNb

+21262.202 + 131.229057 T — 26.4711 TIn(T) + 2.03475 x 10~ T2 — 3.5012 x 10~ T3 + 93399 T~! — 3.06098 x 1023 T’

— 7499.398 + 260.756148 T — 41.77 TIn(T)

aMn phase
GSER
'Mn
—8115.28 + 130.059 T — 23.4582 TIn(T) — 7.34768 x 10> T? + 69827 T !
—28733.41 +312.2648 T — 48 TIn(T) + 1.656848 x 1030 T°

pMn phase
GSER
Mn
—5800.4 + 135.995 T — 24.8785 TIn(T) - 5.83359 x 103 T2+ 70269 T~!
—28290.76 +311.2933 T — 48 TIn(T) + 3.96757 x 1030 T°

aU phase

GIER

—8407.734 + 130.955151 T - 26.9182 TIn(T) + 1.25156 x 103 T? — 4.42605 x 1076 T> + 38568 T~
—22521.8 +292.121093 T — 48.66 TIn(T)

BU phase

G[SJER

-5156.136 + 106.976316 T - 22.841 TIn(T) — 1.084475 x 1072 T>+2.7889 x 108 T> + 81944 T~!
—14327.309 + 244.16802 T - 42.9278 TIn(T)

Bcc_A2 phase

GSER

—752.767 +131.5381 T — 27.5152 TIn(T) — 8.35595 x 1073 T2 + 9.67907 x 10~7 T> + 204611 T !
—4698.365 +202.685635 T - 38.2836 TIn(T)

it

—3235.3+127.85 T — 23.7 TIn(T) — 7.44271 x 107> T?> + 60000 T~

—23188.83 +307.7043 T — 48 TIn(T) + 1.265153 x 1030 T°

G

—8519.353 + 142.045475 T - 26.4711 TIn(T) + 2.03475 x 1074 72 - 3.5012 x 10~7 T>+ 93399 T~!
—37669.3 +271.720843 T — 41.77 TIn(T) + 1.528239 x 1032 T

Fcc_A1 phase

GSER

—3407.734 + 130.955151 T — 26.9182 TIn(T) + 1.25156 x 107> T> — 4.42605 x 107 ° T3+ 38568 T!
—17521.8 +292.121093 T — 48.66 TIn(T)

i

—3439.3 +131.884 T — 24.5177 TIn(T) — 0.006 T2 + 69600 T!

—26070.1 + 309.6664 T — 48 TIn(T) + 3.86196 x 1030 T°

298.15 <T< 955
955 < T< 3000

298.15<T< 1519
1519 < T <2000

298.15 < T< 2750
2750 < T < 6000

298.15<T< 1519
1519 < T <2000

298.15<T< 1519
1519 <T <2000

298.15 < T< 955
955 <T< 3000

298.15<T<941.5
941.5 < T < 3000

298.15 < T< 1049
1049 < T < 3000

298.15<T< 1519
1519 < T <2000

298.15 < T< 2750
2750 < T < 6000

298.15 < T< 955
955 <T< 3000

298.15<T< 1519
1519 < T <2000

The terms OG;f,; and OG{ff are the molar Gibbs free energy of pure netic state. The parameters of a’ and b’ are evaluated in the present

element Mn and U with its defined reference structure in a nonmag- optimization.
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Fig. 1. The phase diagram of the U-Mn system reviewed by Massalski et al. [17].

3. Experimental information
3.1. The U-Mn system

The phase diagram of the U-Mn system consists of seven solu-
tion phases («Mn, BMn, YMn, $Mn, aU, U, yU), and two interme-
tallic compounds (MnUg and Mn,U phases). The phase diagram in
the U-Mn system was originally proposed by Wilhelm and Carlson
[15], and then reassessed by Hanse et al. [16] and Massalski [17].
The maximum solubility of Mn in the yU phase was estimated to
be less than 1 wt% based on metallography. Although the solubili-
ties of U in all the allotropes of Mn have not been investigated
thoroughly, some solid solubilities were found by Whilhelm using
X-ray studies [15]. The Mn,U phase has three polymorphs: aMn,U,
BMn,U and yMn,U. The polymorphic transformation temperatures
of the yMn,U < BMn,U and BMn,U « aMn,U were respectively
reported to be —61 °C and —161 °C [17]. Because these transforma-
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Fig. 2. The phase diagram of the U-Nb system reviewed by Koike et al. [31].

tion temperatures of the Mn,U phase were too low to use in the
present assessment, the Mn,U phase is treated as one stoichiome-
tric phase. The phase diagram of the U-Mn system reviewed by
Massalski [17] is shown in Fig. 1.

In addition, the enthalpies and entropies of formation of the
compounds (MnUg and Mn,U) in the temperature range from
660 °C to 860 °C were determined by Lebedev et al. [18] on the ba-
sis of Electromagnetic Fields (EMF) measurements.

3.2. The U-Nb system

The U-Nb system consists of three solution phases (oU, U and
(yU, Nb)), and a phase separation (yU + (Nb)) in the bcc phase at
lower temperature. The phase diagram in the U-Nb system has
been investigated by many researchers [16,19-31]. There are two
different conclusions for the monotectoid reaction of yU in this
system as follows: the reaction of yU « (Nb)+ aU was reported
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Fig. 3. Calculated phase diagram of U-Mn binary system with experimental data [15,17].
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by Roger et al. [16,22,25,28], and the yU « (Nb) + BU was reported
by Terekhov [29]. Massalski [17] reviewed the phase diagram
according to Rogers [22] and Terekhov [29], where the monotec-
toid reaction of the yU « (Nb) + BU is accepted [29]. However, in
the Koike review [31], the monotectoid reaction of the yU < N-
b+ oU is adopted according to the previous work [16,17,19-
28,30]. The liquidus line was only estimated by Rogers [22],
because of the difficulty in the experiment. In this work, the assess-
ment was carried out on the basis of the experiment data by
[17,21-23,30], and the monotectoid reaction of the yU « (N-
b) + aU was adopted. The phase diagram reviewed by Koike, et
al. [31] is shown in Fig. 2.

In addition, the physical properties such as the Debye tempera-
ture and Young’s modulus of the solid solution alloys were deter-
mined based on the fused salt EMF measurements by Fedorov
and Smirnov [32] and by Vamberskij et al. [33]. Vamberskij et al.
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Fig. 4. Calculated enthalpies of formation of intermetallic compounds at 677 °C in
the U-Mn system compared with the experimental data [18]: the reference states
are YU phase and fMn phase.
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Fig. 5. Calculated entropies of formation intermetallic compounds at 677 °C in the
U-Mn system compared with the experimental data [18]: the reference states are
YU phase and fMn phase.

[33] also calculated Gibbs free energies of formation of the U-Nb
system at 775°C and 900 °C by the Gibbs-Duhem equations
according to their experimental data.

4. Optimized results and discussion

Optimization of thermodynamic parameters describing the
Gibbs free energies of each phase is carried out using PARROT
[34] module in the Thermo-Calc software [35], a computer pro-
gram that can accept different types of data, such as any specific
thermodynamic quantities and phase equilibria, in the same oper-
ation. Each piece of the selected data is given a certain weight and

Table 3
Thermodynamic parameters for the U-Mn system optimized in this work

Parameters in each phase (J/mol)

Liquid phase, format (Mn,U);

oLdd | — 23400+ 11.7T

1[ga =320 -1.77T

28— 10966 + 10.4T

A2 (yU,6Mn) phase, format (Mn,U);(Va)s
0[P = 11000 + 9.83T

1Lbee = 2800 + 4.7T

Ap BU phase, format (Mn,U);

Ghin = G+ 25000

OLfn = 29614.8 — 12.5T

TLip = 69425 — 48.7T

20 = —49519.7 + 47.07T

A1 yMn phase, format (Mn,U);(Va);
opfec ;= 25000

A13 BMn phase, format (Mn,U);(Va),
G = G2 + 5000

oL = 7971 + 6.97T

Mn,U phase, format (Mn)osss7 (U)o.3333
G = 0.6667Gia"+ 0.3333G}” — 9100 — 0.32T
MnUs phase, format (Mn)o.1.429 (U)o.ss71
Gynle = 0.1429G3™" + 0.8571Gy” — 5090 + 2.71T
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A Ref. [22]
X Ref. [21]
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Fig. 6. Calculated phase diagram of U-Nb binary system with experimental data
[17,21-23,30].



XJ. Liu et al. /Journal of Nuclear Materials 380 (2008) 99-104 103

Table 4
A comparison of calculated invariant reactions and special points in the U-Mn system
with experimental results

Reaction type Reaction Mn (at.%) T (°C) References
Catatectic YU > U +L 23 12 206 745  [17]
2.7 122 193 745 [This work]
Peritectic pU + L — MnUg 1.2 215 143 725 [17]
13 21 143 725  [This work]
Eutectoid BU — oU + MnUg 1.2 0 143 626 [17]
Eutectic L — MnUg + Mn,U 215 143 66.7 716 [17]
226 143 66.7 716 [This work]
Eutectic L —» BMn + Mn,U 84 - 66.7 1035 [17]
83.7 989 66.7 1035 [This work]
Melting L - MnyU 66.7 1120 [17]
66.7 1120  [This work]
Peritectic 3Mn +L —» yMn - - - - -
99.7 92,5 99.8 1142 [This work]
Peritectic YMn + L — pMn - - - - -
99.6 90.1 993 1111 [This work]
Eutectoid BMn — oMn + Mnp,U - - - - -
99.7 1 66.7 698 [This work]

the weight can be changed until a satisfactory description for most
of the selected data is achieved.

4.1. The U-Mn system

The calculated phase diagram of the U-Mn system compared to
all the experimental data [15,17] used in the present optimization
is shown in Fig. 3. It is seen from Fig. 3 that the calculated results
are in agreement with Massalski [17], but there are some differ-
ences with Wilhelm [15] in the Mn-rich region. The calculated
largest solid solubilities of U in the pMn, yMn and SMn phases
are respectively 0.7 at.%, 0.4 at.% and 0.3 at.%. In the Mn-rich region,
a little solubility of U in the pMn and yMn was given in this work,
although there are no experimental data about this point. The cal-
culated enthalpies and entropies of formation of the compounds
with the experimental data at 677 °C are shown in Figs. 4 and 5.
The calculated results are in good agreement with the experimen-
tal data [18].

A complete set of the thermodynamic parameters describing
the Gibbs free energy of each phase, including the elements as well,
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Fig. 7. Calculated phase diagram of U-Nb binary system in the U-rich portion with
experimental data [21,22,30].

is given in Table 3. And all invariant reactions and special points in
the U-Mn system are summarized in Table 4, in which the exper-
imental data are also listed for comparison [17]. The calculated
congruent melting temperature of the Mn,U phase and the eutectic
temperatures are in agreement with the corresponding experimen-
tal data [18].

4.2. The U-Nb system

The calculated U-Nb phase diagram with the experimental data
is shown in Figs. 6 and 7. The calculated phase diagram, especially
the phase boundary of miscibility gap region (yU + Nb), is in agree-
ment with the experimental data [17,21-23,30]. The calculated lig-
uidus line agrees with Rogers [22] and the Massalski review [17].
Figs. 8 and 9, respectively indicate the calculated Gibbs free ener-
gies at 775 °C and 900 °C compared with the data obtained from
the Gibbs-Duhem equations [33]. It is seen from Figs. 8 and 9 that
there are some differences between the present calculated results
and data reported by Vamberskij [33]. In particular, in the
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Fig. 8. Calculated Gibbs free energy at 775 °C in the U-Nb system compared with
the calculation data by Vamberskij et al. [33]: the reference states are bcc yU phase
and bcc (Nb) phase.

Table 5
Thermodynamic parameters for the U-Nb system optimized in this work

Parameters in each phase (J/mol)
Liquid phase, format (Nb,U);

oL, =39836.8 — 41.2T

109 — —149230.3 +47.2T + 4.66T In(T)
2109 ' _38091.3 — 4.33T

A2 (yU,Nb) phase, format (Nb,U);(Va)s
OLR, = 17706.2 — 23.099T

1R — —54699.5 + 30.02T

2[R — —42938.27 + 9.6T

3L, = —28942 + 11.06T

Ap BU phase, format (Nb,U);

Gy = G +15000

oLy, =4018.4

A20 oU phase, format (Nb,U);

G = GXE< + 25000

LX)y = —5000
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Table 6
A comparison of calculated invariant reactions and special points in the U-Nb system with experimental results
Reaction type Reaction Nb (at.%) T (°C) References
Eutectoid BU - aU +yU 13 0.5-0.9 10.5~11.5 664 [31]

1.3 1.09 10.1 664 [This work]
Monotectoid YU - oU + (Nb) 133 0.5 68~72 647 [31]

13.9 13 70 647 [This work]
Critical (YU, Nb) - yU + (Nb) 52.3 930-970 [31]

50.7 958 [This work]

O | | | |

Gibbs free energy of formation, kJ / mol

14 YU i QUL (Nb) ¢ (Nb)
- T T T T
U 20 40 60 80 Nb
Nb /at. %

Fig. 9. Calculated Gibbs free energy at 900 °C in the U-Nb system compared with
the calculation data by Vamberskij et al. [33]: the reference states are bcc YU phase
and bcc (Nb) phase.

vyU + (Nb) miscibility gap region, the calculated Gibbs free energies
are higher than ones by Vamberskij. However, the present calcula-
tions are reasonable by considering the error range of Vamberskij’s
data.

A complete set of the thermodynamic parameters describing
the Gibbs free energy of each phase in this system is given in Table
5, and all invariant reactions in the U-Nb system are summarized
in Table 6, in which the experimental data are also listed for com-
parison [31].

5. Conclusions

The phase diagrams and thermodynamic properties in the U-
Mn and U-Nb binary systems were evaluated by combining the
thermodynamic models with the available experimental informa-
tion in literature. A consistent set of optimized thermodynamic
parameters has been derived for describing the Gibbs free energy
of each solution phase and intermetallic compounds in the U-Mn
and U-Nb binary systems. Good agreement between the calculated
results and most of the experimental data is obtained.
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